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Motivation

To identify features of S C R?, of geometric or topological character from a
random sample of points drawn on S.

“To identify” means to answer correctly, almost surely (a.s.) when the
sample size tends to infinity.

More specifically aims at giving some partial answers to the following
questions:
o Is S full dimensional?
o If S is full dimensional, is it “close to a lower dimensional set” M?
o If Sis “close to a lower dimensional M”, can we

a) estimate M?
b) estimate some functionals defined on M (in particular, the Minkowski
content of M)?
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Example, denoising samples

Figure: The upper panel shows 5000 noisy points (left) and 50000 noisy points
(right) drawn on B(T, 0.3). The lower panel shows the result of the corresponding
denoising process.
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Let X, = {Xi,...,X,} be random sample points drawn on an unknown
compact set S C R?. We consider two different models:

o The noiseless model: X, is taken from a distribution whose support is S
itself; Aamari and Levrard (2015), Amenta et al. (2002), Cholaquidis et
al. (2014), Cuevas and Fraiman (1997).
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The models

Let X, = {Xi,...,X,} be random sample points drawn on an unknown
compact set S C R?. We consider two different models:

o The noiseless model: X, is taken from a distribution whose support is S
itself; Aamari and Levrard (2015), Amenta et al. (2002), Cholaquidis et
al. (2014), Cuevas and Fraiman (1997).

o The parallel (noisy) model: X, supported on S = B(M,R;), Ry > 0,
where M is a d’-dimensional set with d’ < d; Berrendero et al. (2014).
Other different models “with noise” are considered in Genovese et al.
(2012a), Genovese et al. (2012b) and Genovese et al (2012c¢).
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Hausdorff dimension

Hausdorff Measure
Given (M, p) metric space, §,r > 0 and E C M, let

H5(E) =inf{ > (diam(B;))" : E C U, B;, diam(B;) <6 o,
j=1

where diam(B) = sup{p(x,y) : x,y € B}, inf() = co. Define
H'(E) = lims_o H5(E).

Hausdorff dimension

dimy(E) = inf{r : H'(E) = 0} = sup{r: H"(E) = co}. (1)
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@ When M is a k-dimensional smooth manifold, dimy (M) = k.

o In general: dimy (M) < d = M = 0.
The converse implication not always true, even if HA (OM) =0, see
Avila and Lyubich (2007).
It holds if reach(M) > 0 since H~!(OM) < co (Ambrosio, Colesanti
and Villa (2008)).

o If M C R? is a manifold, M = § < dimy(M) < d.
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Boundary Balls

B(x;, r) is a boundary ball of S,(r) if 3y € B(x;, r) such that y € 8S,,(r).

peel(S,(r)) is the union of all non-boundary balls of S, (r).

Proposition

X, ={Xi,...,X,} iid of Px < p, being p the Lebesgue measure. Then,
with probability one, foralli =1,...,nand all » > 0,

sup{|jz — Xi||,z € Vor(X;)} > r & B(X;,r) isabb
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Boundary Balls and empty interior of general sets

Theorem

Let M C R? be a compact non-empty set.
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Boundary Balls and empty interior of general sets

Let M C R? be a compact non-empty set.

0 if M = (Z),Aand M fulfils the outside rolling condition for some r > 0,
then peel (S, (r')) = ( for any set S, (') with ¥/ < r.

o if M # () and there exists a ball B(x, po) C M such that B(xo, po) is
standard w.r.t to Py, with constants § and \.
Then peel(S, (r,)) # 0 eventually, a.s., where r, is a radius sequence
such that: (k'€")1/4 <, < min{py/2, A} for a given k > (dwg) "
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Boundary Balls and empty interior of manifolds

Theorem

Let M be a d’-dimensional compact manifold in R? and X, . . ., X, from Py
with support M with continuous density f with respect the d’-dimensional
Hausdorff measure on M, and f(x) > f; for all x € M. Let us define, for
any 3 > 6!/, r, = Bmax; min;; || X; — X;||. Then,

i) if d’ = d and M is C? then peel(S,(r,)) # 0 eventually, a.s..



Boundary Balls and empty interior of manifolds

Theorem

Let M be a d’-dimensional compact manifold in R? and X, . . ., X, from Py
with support M with continuous density f with respect the d’-dimensional
Hausdorff measure on M, and f(x) > f; for all x € M. Let us define, for
any 3 > 6!/, r, = Bmax; min;; || X; — X;||. Then,

i) if d’ = d and M is C? then peel(S,(r,)) # 0 eventually, a.s..

i) ifd < d and M is a C? manifold without boundary, then
peel(S,(r,)) = 0 eventually, a.s..



cless

Some simulations

In each case, we draw 200 samples of sizes n = 50, 100, 200, 300, 400, 500,
1000, 2000, 5000, 10000 on the A-parallel set around the unit sphere;

A | d=2 d=73 d=4

0 <50 <50 <50
0.01 | [51,100] [1001,2000] > 10000
005 | <50  [201,300]  [1001,2000]

01 | <50 [51,100] [101,200]
02 | <50 <50 [51,100]
03 | <50 <50 [51,100]
04 | <50 <50 <50
05 | <50 <50 <50

Table: minimum sample sizes to correctly decide on, at least 190 out of 200, that the
support is lower dimensional (in the case A = 0) or that it is full dimensional (cases
with A > 0).
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Noisy model

YV, supported on § = B(M, R;), assume reach(M) = Ry and 0 < R; < Ry.

o if we know R;, decide if M is full dimensional or not.
o if dimy (M) < d, estimate R .

Theorem

Py < p, p the the Lebesgue measure. The density f fulfils f > fp. Let
o &, = c(log(n)/n)"/4, with ¢ > (4/(fowa))"/%,
o Iy, = {j : B(Yj,¢,) is a boundary ball}.

° Rn = MaXy,cy, mianIbb ||Yl - Y]”
i) if M # (), then there exists C > 0 such that, with probability one

|I§,, — Ry| > C for n large enough. 3)
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[e] Jele}

The algorithm

M C R¢ compact, reach(M) = Ry > 0, )), iid of Y, with support
S =B(M,R;),0 < R; < Ry. Py with density f > f; > 0.
© S, an estimator of S (based on ) such that dy(0S,,08) < ay,
eyentually a.s., for some a,, — 0. Let R,, be an estimator of R; such that
|R, — Ri| < e, eventually a.s. for some e, — 0.
@ Fixed \ € (0, 1), define Y) = {¥},...,Y)} C Y, where Y} € V) if
and only if d(Y},9S,) > \R,.
@ Forevery Y € V), define {Z,,...,Z,} = Z, as follows,
YA — wagn(yﬁ)

1

Zi =1y (Y) + Ry
25, 1Y = w5, (V)

“

being ,; (¥;) the metric projection of ¥} on 95,,.
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Consistency

Let ¢, = c(log(n)/n)"/4 and ¢ > (4/(fowa))"/?.

Consistency

—
S~
w

There exists b, = O (rnax(a,, s €n, s,,)) such that, with probability one, for

n large enough,
dH(Zma M) S bn

Corollary

Given A € (0, 1), let Z, be the points obtained using
R, = maxy,cy, minjc;, ||¥; — Y;|| to estimate R and {Y;,i € I;,} as an
estimator of 0S. Then,

dp (2, M) = O((log(n)/n)"/ D), as.
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Simulations

15 T T T T T 15
1 1
0.5 0.5
0 0
-05 -05
-1 -1
71:?.5 »1‘ —0‘.5 6 0‘.5 1‘ 15 _1;?5 ,; 05 E) 05 ; 15

Figure: 5000 points (left) and 50000 points (right) drawn on B(Sg,, 0.3), with
St = {(x,¥), [x]> + |y|> = 1}. The black line corresponds to the original set S,
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d’-dimensional Minkowski content of M,
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Minkowski content estimation

d’-dimensional Minkowski content of M,

B
o Pa(BM.0)
e—0 wd,dréd_d

:L()(M) < 0. )

Noiseless model

X, = {Xy,...,X,} iid of Px on M C R, Py is standard w.r.t the
d’-dimensional Lebesgue measure, there exists Lo(M). Let r, such that
r, — 0 and (log(n)/n)"/4" = o(r,), then

(a)

lim P BEnw) Lo(M) ass.. )

=00 (W _ 4 rg_d



Minkowski content estimation

Minkowski content estimation

d’-dimensional Minkowski content of M,

lim H4BM, €)
e—0 Wy_gr ed—d

=Ly(M) < 0.



Minkowski content estimation

d’-dimensional Minkowski content of M,

lim H4BM, €)
e—0 Wy_gr ed—d

=Ly(M) < 0.

Noiseless model

X, = {Xi,...,X,} iid of Py on M C R, Py is standard w.r.t the
d’-dimensional Lebesgue measure, there exists Lo(M). Let r,, such that
r, — 0and (log(n)/n)'/%" = o(r,), then

(b) If reach(M) = Ry > 0, then

pEGum) _ pyay = 0(2 41,

Wd—d'T'n

where 3, := dy(X,, M) = O(log(n)/n)l/d,.



Minkowski content estimation

Noisy model

If max(ay>, en, €,) = o(r,) where &, = c(log(n)/n)!/¢ with
¢ > (4/(wafy))"/?, then,

B(Z,, 1y
lim Md_’d)) =Lo(M) as.. %)

n—o0 Wa—d'Tn
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